
J Math Chem (2012) 50:843–849
DOI 10.1007/s10910-011-9928-y

ORIGINAL PAPER

Unexpected expectation values for latent molecular
properties

Paul G. Mezey

Received: 30 September 2011 / Accepted: 3 October 2011 / Published online: 18 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Latent molecular properties are not exhibited by the given molecular struc-
ture but are reproducibly exhibited by the same molecule in a different electronic state
or if some molecular interactions have taken place. A consequence of the Holographic
Electron Density Theorem, as applied to latent properties, provides a framework that
allows an extension of the expectation value formalism, leading to “unexpected” expec-
tation value expressions for latent properties. Connections of special cases of this
approach to earlier density matrix extrapolation methods are pointed out.
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1 Introduction

Various formulations of electron density representations have provided important
insight into molecular properties, starting with early statistical models (see, e.g.
[1–3]) and density functional theory [4–10], with a central role of the Hohenberg–
Kohn Theorem [10].

As established by this important theorem [10] already in 1964, information on
all molecular properties can be deduced, at least in principle, from the molecular
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electron densities (strictly speaking, the proof of the theorem establishes this only
for non-degenerate ground state systems). Explicitly, the Hohenberg–Kohn Theorem
states that in a non-degenerate ground state, the molecular electron density deter-
mines the molecular energy and all other properties. This may be stated differently:
the molecular electron density carries the complete information about the molecule.
Consequently, the Hohenberg–Kohn Theorem may be regarded as the fundamental
theorem of Molecular Informatics.

Later related developments provided additional results. An important result,
although not applicable to real molecules, only to artificial, bounded quantum sys-
tems confined to finite regions of the three-dimensional space, was achieved by Riess
and Munch [11] in 1981. For finite and bounded model quantum systems with bound-
aries, their result established the following:

Any nonzero volume part of the non-degenerate ground state electron density of
a closed and bounded model quantum system can be extended a unique way to the
complete, although finite model quantum system.

Clearly, real molecules are not closed, neither finite nor bounded, they cannot pos-
sess boundaries, hence this result is not applicable to real molecules. Whereas the
limitation of a finite and bounded model represented by a closed set may appear not
too serious, it is, on the one hand, physically significant when contrasted to the open
and boundaryless nature of real molecules, and on the other hand, for such artificial
systems the formal mathematical treatment is simpler, precisely as a consequence of
the physically unrealistic closed and bounded properties of the model. This very lim-
itation was well recognized and was correctly treated by Riess and Munch [11], who
did not overstate the scope of their result, and in fact, this limitation had a fundamental
role in their proof. Note, however, that in general, ignoring such limitations is one of
the possible pitfalls of careless application of some mathematical theorems. In fact,
this is one of the two, nearly equally misleading false mathematical steps (“deadly
sins in mathematics”), which are

1. division by zero, and
2. treating open systems as if they were closed systems.

Doing either 1. or 2., one may falsely claim to “prove” almost anything and the
opposite, simultaneously (thereby achieving the ultimate “false democracy” of ideas,
where every statement is lowered to the rank of mere “opinion”, or the ultimate “false
democracy” of mathematics: “all numbers are created equal”).

Therefore, any attempt to find a similar local-global information relation for real
molecules, had to take into account the additional mathematical difficulty of treating
open, boundaryless systems.

As it turned out, by applying a four-dimensional transformation and exploiting
some additional fundamental properties of molecular electron densities, it was possi-
ble to prove the following “Holographic Electron Density Theorem” (Mezey [12]) for
the open systems of real, boundaryless molecules:

Any nonzero volume part of a molecular electron density in a non-degenerate
ground state contains the complete information about all properties of the entire,
boundaryless molecule.
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2 Exhibited and latent molecular properties revisited

One extension [13] of the Holographic Electron Density Theorem involves the con-
cepts of exhibited and latent molecular properties.

Consider a molecule M in its non-degenerate electronic ground state. Typically,
the molecular properties exhibited by an isolated molecule M are those which are pri-
marily associated with nuclear arrangements similar to the most stable one (typically,
an energy minimum) in the electronic ground sate. These are the Exposed Proper-
ties which one may regard as those directly associated with the ground state electron
density.

However, the same molecule M, or a system that can be obtained from it also has
properties which are not exhibited in the electronic ground state at the most stable
conformation of the original molecule M. A so-called Latent Property P of the mol-
ecule is a non-exposed property that is reproducibly exhibited by the molecule if it is
exposed to a specific interaction, or to a specific range of interactions.

For example, some of the latent properties of the most stable conformation of ground
state molecule M are those which are associated with the electronic excited sates, or
those of its highly distorted nuclear arrangements, or different stable conformations, or
even with products of dissociation reactions preserving the same overall stoichiometry
of the original molecule M.

A latent property P may be regarded as one consequence of the response of the
molecule M to a specific interaction X.

It is natural to ask the question: where is the information stored that determines all
such latent properties of a molecule M ?

Some of these latent properties are exhibited in response to some interactions, and
it is evident that the interacting partner or partners must have some role in the manifes-
tation of the latent properties. However, an essential part of the information must come
from the molecule itself, since different molecules M and M′ usually have different
latent properties, and even a process involving the same interaction partner or partners
for two different molecules M and M′ is likely to lead to two different sets of latent
properties.

A latent property may be one that is an observable property for both the original
and the modified molecule, but the observed values are different.

Alternatively, a latent property may be one that is not even well-defined for the
original molecule, but it is well-defined for the modified molecule.

An example for the latter case is the “latent dipole moment of a cation M+,
that becomes exhibited after the cation receives an electron”. Here, at least in
the traditional sense (although generalizations are possible), no dipole moment is
interpreted for the cation M+, but a dipole moment is well defined for the neu-
tral molecule (M+)′ = (M+)− = M obtained by adding an electron. Still,
a “latent dipole moment” of cation M+ can be considered in such cases as
well.

By an extension of the original holographic theorem, the latent molecular properties
can also be included, leading to the Holographic Electron Density Theorem for Latent
Properties (Mezey [13]), stating:
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Any nonzero volume part of a molecular electron density in a non-degenerate
ground state contains the complete information about all latent, non-exhibited prop-
erties of the entire, boundaryless molecule [13].

According to the Holographic Electron Density Theorem for Latent Properties, even
local regions of the molecular electron density, possibly quite remote in 3D space from
the actual molecular region primarily responsible for a given latent property, already
carry the necessary information for the determination of the given latent property.

Latent property theory also raises several questions concerning the conventional
view of similarity, since on an information-theoretical basis and invoking some of
the tools of complexity theories, the fundamental information content in the actually
present molecule and the one already exhibiting the previously only latent properties
is nearly invariant, where “near invariance” can be interpreted by measure theory and
the “measure zero” concept.

These results imply that local electron densities can be used for latent property
prediction.

By the inclusion of latent molecular properties to the family of properties which
can be studied in terms of molecular fragments, the conventional tools of molecular
similarity analysis, for example, those based on the tools of the quantum similarity
methodology of Carbo and several related approaches [14–24], can be effectively
employed in a much wider context.

3 A formal extension of the expectation value concept for latent properties

The concept of expectation value is a central concept of quantum mechanics con-
cerning observables and the measurement process. For linear Hermitian operators A
representing observables, with respect to a wavefunction �, the definition is

< � |A| � >= X, (1)

that gives the actual eigenvalue X of wavefunction � if it is an eigenfunction
of operator A, where X corresponds to the resulting value obtained by measure-
ment, otherwise X is the average value of infinitely many measurements performed
simultaneously on infinitely many identical physical systems all described by the
same wavefunction. Clearly, this second case cannot be verified by experiments,
nevertheless, all the known facts appear to confirm the validity of this defini-
tion.

The above interpretation for the second case, by the very definition, is usually
considered for “exhibited properties”. However, one might argue that the above sec-
ond case in fact corresponds to possibly infinitely many latent properties, since the
measurement can cause the non-eigenstate system to change in a way that cannot
be predicted, and the results of individual measurements are for actual properties for
infinitely many systems, possibly different in various ways from the original system.
Hence, even the original expectation value concept can be viewed from the perspective
of latent properties.
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However, one may consider the problem of latent properties with respect to specific
changes of the original molecule M to some system M′, where the originally latent
property of M is an exhibited property of system M′.

Whereas the electron density approach provides and important framework for latent
properties in terms of the Holographic Electron Density Theorem for Latent Proper-
ties, note, however, that the traditional wavefunction approach also holds advantages,
especially, for property predictions, and latent properties are exceptional in this con-
text as well. In fact, the vawefunction approach for latent properties leads to some
“Unexpected Expectation Values”.

One may start out with the natural assumption that various wavefunctions, such as
those of the original and modified molecules, can be converted to one another. Con-
sider a latent property that is not exhibited by a molecule M of wavefunction �, but
after some interaction, the molecule changes to M′, now described by wavefunction
� ′, and the modified molecule M′ already exhibits a property X′ that is originally only
latent property for molecule M. This property X′ can be expressed as the expectation
value

< � ′ |A| � ′ >= X′, (2)

where the traditional concept of the expectation value is used.
If C is an operator that has adjoint C′, where operator C, when acting on the molec-

ular wavefunction � of M converts it to wavefunction � ′ of the modified molecule
M′, that is, if

C � = � ′, (3)

then using the operator A corresponding to the measurable property X′ gives the
expectation value

< � ′ |A| � ′ >=< �
∣
∣C′A C

∣
∣ � >= X′, (4)

that is in fact a formal, “unexpected” expectation value of operator C′ A C with respect
to the original wavefunction �, for a property X′ that is not an exhibited property,
only a latent property with respect to the corresponding original molecule M.

The above “unexpected” expectation value relation for the original wavefunction
�,

< �
∣
∣C′ A C

∣
∣� >= X′, (5)

when compared to the representations of local electron densities and some of the
similarity concepts, leads to similar applications as the ordinary expectation values
commonly used for exhibited properties.

We may say that, the operator C′ A C takes the role of the operator for a formal
“latent observable property” for system M described by the wavefunction �, where
the property corresponding to operator A, belongs to an actual observable for system
M′ described by wavefunction � ′. The very same operator A may give a different
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value for this observable, if applied directly to the wavefunction � for system M,
or possibly, operator A does not even belong to an actually observable traditional
property for system M.

In effect, the family of observables for system M is extended by a family of “latent
observables”, with the corresponding operators of type C′ A C, where the same expec-
tation value formalism can be applied as usually applied for the actual observables.

Note, however, that the transformation operator C, converting wavefunction � to
� ′ can be rather complicated, and the new operator C′ A C may violate some of the
usual requirements of quantum mechanical operators associated with observable prop-
erties. Specifically, linearity may no longer apply, and a computational determination
of C may be complicated in various cases. Also note, however, that some of these
limitations are expected, since if all the usual requirements for quantum mechanical
operators commonly associated with observable properties would be fulfilled, then the
very property would no longer be considered a latent property, but an exhibited prop-
erty, one, that in such a case would be just a member of the family of the observable
properties of the original system M.

It is worthwhile to point out that, extrapolations along potential energy hypersurfac-
es are common cases for latent property predictions, for example, those extrapolations
along reaction paths [25]. In such cases, one might prefer some density functional or
density matrix formalism instead of the use of formal expectation values, especially,
if sufficient accuracy can be achieved with simpler approximate methods.

4 Summary

By invoking an operator C converting the wavefunction � of a molecule M to a wave-
function � ′ of a modified molecule M′ that has an exhibited property of operator A
which is only a latent property for the original molecule M, a formal, expectation value
expression can be constructed, directly involving the original wavefunction � and a
transformed operator C′ A C.

With such operators C′ A C of “Latent Observables”, belonging to “Latent Proper-
ties” with reference to system M of wavefunction �, some “Unexpected Expectation
Values”

< �
∣
∣C′ A C

∣
∣� >= X′

can be obtained, all within the usual expectation value formalism.
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